博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
VALSE2019总结(4)-主题报告
阅读量:5102 次
发布时间:2019-06-13

本文共 1590 字,大约阅读时间需要 5 分钟。

4. 主题报告

4.1 无人驾驶的环境感知与理解 (jian yang, NJUST)

  1. outline

    • 无人驾驶发展简介
      • 遥控驾驶,自主驾驶,南理工无人车,
    • 行车环境视觉感知与理解 (具体介绍贴图片)
      • 阴影检测与去除
      • 车道线检测
      • 行人检测与姿态估计
      • 场景分割与深度估计
  2. 具体,如图

    801115-20190516100641566-1845115086.jpg

    801115-20190516100645555-273667146.jpg

    801115-20190516100657590-1750761623.jpg

    801115-20190516100704196-575364920.jpg

    801115-20190516100712732-2001636651.jpg

    801115-20190516100716972-1766877506.jpg

    801115-20190516100723687-714156126.jpg

    801115-20190516100727206-1913706302.jpg

    801115-20190516100738942-511068899.jpg

    801115-20190516100744556-1475647946.jpg

    801115-20190516100747863-1506669034.jpg

    801115-20190516100752302-1500683869.jpg

    801115-20190516100756866-1644928175.jpg

    801115-20190516100808530-498019251.jpg

    801115-20190516100812651-1070561984.jpg

    801115-20190516100816438-383353839.jpg

    801115-20190516100820065-1015068095.jpg

    801115-20190516100823739-979566666.jpg

    801115-20190516100832837-186564441.jpg

    801115-20190516100837311-858088988.jpg

    801115-20190516100840836-547997972.jpg

    801115-20190516100843549-1573921585.jpg

    801115-20190516100847160-1015291753.jpg

    801115-20190516100900448-281635633.jpg

    801115-20190516100904877-1541151209.jpg

    801115-20190516100906605-1662357260.jpg

    801115-20190516100909790-1248081046.jpg

    801115-20190516100912926-688328616.jpg

    801115-20190516100922768-1274052203.jpg

4.2:Learning to track and segment objects in videos

  • 很迷的一个报告,没啥干货

4.3 AI破晓——机遇与挑战 (陶大程)

  • 没听

4.4 深度学习处理器 (陈云ji)

  • 没意思,贴图待定

4.5 基于知识驱动的行为理解

  1. outline

    • knowledge engine - a possible direction: HAKE
    • pose - open the door of activity understanding: Alphapose, Crowdpose
    • sequence modeling: Deep RNN: semi-couple prociple
    • summary
  2. why activity understanding is difficult ?

    • huge semantic Noise (compare to object recognition)
    • Long-tail distribution, few-shot problem (DL fails)
    • 结论:pose is not enough, we need konwledge pose
  3. Human activity konwledge engine (HAKE)

    • to see/parse/understand the activity
    • knowledge engine construction: 见图片
    • reasoning via part states(HAKE): 见图片
    • human-object interaction
      • 见图片,几个 HOI Dataset 有:AVA, ActivityNet, Kinetics
    • conclusion:
      • activity data is semantically noisy
      • knowledge at body part can help to denote
      • HAKE:
      • HAKE based Two-stage paradigm,见图片
  4. pose - open the door of activity understanding: Alphapose, Crowdpose

    • 没记录
  5. sequence modeling: Deep RNN: semi-couple prociple

    • 没记录
  6. summary

    • 没记录,等他主页公布PPT吧
  7. 部分图片,

    801115-20190516105941402-151758333.jpg

    801115-20190516105950710-119292900.jpg

    801115-20190516105957003-237062624.jpg

    801115-20190516110555446-651537543.jpg

    801115-20190516110604590-582844346.jpg

    801115-20190516110607754-633654600.jpg

    801115-20190516110621530-489068070.jpg

    801115-20190516110626596-1508740674.jpg

    801115-20190516110641180-1677943577.jpg

    801115-20190516110649519-371567336.jpg

    801115-20190516110657570-1466974033.jpg

    801115-20190516110701972-1594738868.jpg

    801115-20190516110708311-1761010536.jpg

    801115-20190516110716310-1696130578.jpg

    801115-20190516110728973-1541706777.jpg

    801115-20190516110732300-926880373.jpg

    801115-20190516110742564-1831689732.jpg

    801115-20190516110747064-634739055.jpg

    801115-20190516110755073-523559634.jpg

    801115-20190516110802774-1757305830.jpg

4.6 人工智能与未来出行

  • 没学术性,贴图待定

4.7 计算机视觉的下一步:迈向大AI (罗杰波)

  • 没注意,贴图待定

4.8 梯度之谜 (孟德宇)

  1. issue
    • limitations of model-driven methodology
      • generally with nonconvex model
      • only fit one unsupervised image
      • slow prediction speed
    • limitations of data-driven methodology
      • require supervised-data
      • black box issue: interpretability
      • network parameters/structure are hard/easy to be designed
  2. 从梯度角度思考,解决上述问题
  3. 贴图片,有一些论文

转载于:https://www.cnblogs.com/LS1314/p/10885105.html

你可能感兴趣的文章
整体二分——[Poi2011]Meteors
查看>>
数据库3
查看>>
delphi之事件
查看>>
windows server 2008 r2 安装
查看>>
Enigma –> Sadness
查看>>
存储分类
查看>>
下一代操作系统与软件
查看>>
【iOS越狱开发】如何将应用打包成.ipa文件
查看>>
[NOIP2013提高组] CODEVS 3287 火车运输(MST+LCA)
查看>>
Hat’s Words (分成两个字符串考虑)
查看>>
Yii2 Lesson - 03 Forms in Yii
查看>>
Python IO模型
查看>>
Ugly Windows
查看>>
DataGridView的行的字体颜色变化
查看>>
java.nio异步线程安全的IO
查看>>
(网上摘抄)云标签
查看>>
记录-时间日期
查看>>
便签:
查看>>
JS function 函数基本定义方法
查看>>
Java再学习——关于ConcurrentHashMap
查看>>